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Abstract

Weight functions, which give stress intensity factors in terms of applied loading, are constructed, for three-dimen-

sional time-dependent loading of a semi-infinite crack, propagating at uniform speed. Both a model problem, governed

by a scalar wave equation, and the full vectorial problem for Mode I loading, are considered. The medium through

which the crack propagates is viscoelastic; the approach is general but explicit formulae are given when the medium is a

Maxwell fluid. The weight functions are exploited to develop formulae for the first-order perturbations of stress in-

tensity factors when the crack edge is no longer straight but becomes slightly wavy. Implications for stability, and for

‘‘crack front waves’’ in the case of the Mode I problem, are discussed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several studies have been made concerning the perturbation from straight of a crack, induced by regions

of locally heterogeneous resistance to fracture. Rice et al. (1994) addressed the problem of such a crack

moving through a model elastic solid, in which motion was governed by a single scalar wave equation in

place of the full vectorial equations of elastodynamics. Perrin and Rice (1994) used these results to show

that no statistically stationary crack configurations exist under small random variations in critical fracture

energy. Morrissey and Rice (1998) presented simulations of 3D dynamic fracture, revealing the existence of

a decaying signal propagating along the crack front in the model problem, and a persistent ‘‘crack front
wave’’ in the case of Mode I loading in real vectorial elastodynamics. These phenomena arise from a

singularity on the real axis in the Fourier transform of the transfer function relating crack front position to

fracture energy. This singularity exists both in the model problem (Rice et al., 1994), and in the Mode I

problem (Ramanathan and Fisher, 1997).

International Journal of Solids and Structures 39 (2002) 5409–5426

www.elsevier.com/locate/ijsolstr

* Corresponding author.

E-mail address: j.r.willis@damtp.cam.ac.uk (J.R. Willis).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00356-6

mail to: j.r.willis@damtp.cam.ac.uk


The above studies all relate to a case in which the coefficient of the second term in the asymptotic ex-

pansion of the stress ahead of the unperturbed crack (denoted m) is zero. Woolfries and Willis (1999)

addressed the scalar model problem to take account of possible non-zero m. They showed that the results of

Willis and Movchan (1995) agreed with those of previously mentioned studies when m was zero. They went
on to show that perturbations in crack front position grew exponentially with time when m was positive,

and decayed exponentially when m was negative. This corresponds to the sign of the imaginary part of the

position of the singularity in the transfer function in complex transform space. The case of zero m, giving

rise to a real singularity, is thus at the boundary of stability: ‘‘crack front disorder’’ grows algebraically

rather than exponentially with time.

Very few exact closed form solutions exist relating to viscoelastic fracture problems. Willis (1967) used a

Wiener–Hopf factorization to obtain the stress intensity factor for a steady-state semi-infinite anti-plane

shear crack propagating through a standard linear solid. Walton (1982) generalized these results to a
general viscoelastic medium. Atkinson and Coleman (1977), Atkinson (1979) and Atkinson and Popelar

(1979) have also addressed the dynamic fracture of linear viscoelastic material.

This paper considers the effect of dissipation on a perturbed crack moving through one of the simplest

viscoelastic materials, a Maxwell fluid. The Fourier transform of the transfer function relating crack front

position to fracture energy is found for both the scalar and vectorial Mode I problems. In the scalar model

case (Section 2), this transform and its complex singularities are found explicitly. Crack front stability

depends on a balance between the coefficient m and the relaxation time s. Increasing the amount of dis-

sipation through decreasing the relaxation time s increases the crack stability. The stability criterion re-
lating these variables is found explicitly. The limiting behaviour of the transfer function in real space near

the wavefront is also found explicitly. The transfer function is found from its transform numerically and

plotted using the discrete Fourier transform.

The Mode I problem is also considered (Section 3), following closely the work of Willis and Movchan

(1995). An expression for the Fourier transform of the transfer function is given; it contains an integral

which must be evaluated numerically. It is found that the singularity present in elasticity which gives rise to

crack front waves (found by Ramanathan and Fisher, 1997) is moved off the real axis by the introduction of

viscoelastic dissipation, rendering the crack stable for zero m. Repeating the process for a range of values
shows that, as for the scalar case, crack stability increases with the amount of dissipation.

2. Scalar model problem

We begin with analysis of a scalar problem for a crack propagating through a Maxwell fluid.

2.1. Problem formulation

The problem to be solved is the model problem introduced by Rice et al. (1994), now governed by

a viscoelastic constitutive relation characterized by a relaxation function whose time derivative is a ge-

neralized function, denoted LðtÞ. The model solid is described by a single ‘‘displacement’’ variable

uðt; x1; x2; x3Þ, and an associated ‘‘stress’’ variable rðt; x1; x2; x3Þ given by

rðt; xÞ ¼
Z

Lðt � t0Þeðt0; xÞdt0; ð2:1Þ

where

eðt; xÞ ¼ ou
ox3

ðt; xÞ: ð2:2Þ
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The equation of motion for the displacement isZ
Lðt � t0Þr2uðt0;xÞdt0 ¼ qu;ttðt; xÞ; ð2:3Þ

where q is the density.

A crack propagates dynamically so that, at time t, it occupies the domain

S� ¼ f �1 < x1 � Vt < �/ðt; x2Þ;�1 < x2 < 1; x3 ¼ 0g; ð2:4Þ

where 06 � 
 1. The crack front at time t therefore lies along the curve

x1 ¼ aðt; x2Þ :¼ Vt þ �/ðt; x2Þ; x3 ¼ 0: ð2:5Þ

The boundary condition

r ¼ 0 on x3 ¼ 0; x1 < aðt; x2Þ ð2:6Þ

is to be enforced, with general remote loading conditions. In the text below we derive the asymptotic
formulae for the stress intensity factor and the energy release rate associated with the moving crack.

2.2. Fundamental identity and the weight function

Fourier transforming (2.3) with respect to the variables x1, x2 and t, the function ~uuðx; n1; n2; x3Þ, defined
by

~uuðx; n1; n2; x3Þ ¼
Z Z Z

uðt; x1; x2; x3Þ expðixtÞ expðin1x1Þ expðin2x2Þdtdx1 dx2; ð2:7Þ

satisfies the equation

o2~uu
ox23

¼ n2
1

 
þ n2

2 �
x2

ðcðxÞÞ2

!
~uu; ð2:8Þ

where

ðcðxÞÞ2 ¼
eLLðxÞ

q
; ð2:9Þ

and eLLðxÞ is the time Fourier transform of LðtÞ. A solution which decays as jx3j ! 1 is

~uuðx; n1; n2; x3Þ ¼ Bðx; n1; n2Þ exp i x2=ðcðxÞÞ2
��

� n2
1 � n2

2

�1=2
jx3j
�
; ð2:10Þ

and, looking at (2.1), the transform of the stress variable is

~rrðx; n1; n2; x3Þ ¼ ieLLðxÞsgnðx3Þ x2=ðcðxÞÞ2
�

� n2
1 � n2

2

�1=2
~uuðx; n1; n2; x3Þ: ð2:11Þ

It is desirable to introduce a moving coordinate,

X :¼ x1 � Vt: ð2:12Þ

Then, following Willis and Movchan (1995), we define the field Uðt; x1; x2; x3Þ and its associated traction

Rðt; x1; x2; x3Þ so as to satisfy the equation of motion (2.3) and the conditions
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Rðt; Vt þ X ; x2; 0Þ ¼ 0 when X > 0;

½R�ðt;X ; x2Þ ¼ 0 for all X ;

½U �ðt;X ; x2Þ ¼ 0 when X < 0;

½U �ðt;X ; x2Þ ! ð2=pÞ1=2X�1=2dðx2ÞdðtÞ as X ! 0þ:

ð2:13Þ

Here, the notation ½�� means the jump across x3 ¼ 0 of the quantity indicated, evaluated when x1 ¼ Vt þ X .

The justification for this definition, in the context of viscoelastic response, is given in Appendix A.

From (2.11), the Fourier transforms of the displacement jump ½U � across the plane x3 ¼ 0 and the
traction R (interpreted via (2.12) as functions of t, x1 and x2) are related by

eRRðx0; n1; n2Þ ¼
i

2
eLLðx0Þ ðx0Þ2=ðcðx0ÞÞ2

�
� n2

1 � n2
2

�1=2
½ eUU �ðx0; n1; n2Þ: ð2:14Þ

Here, we set x0 ¼ x � V n1. This allows the Fourier transforms, regarded as functions of ðx; n1; n2Þ, to be
interpreted as transforms relative to t, X and x2 (Willis, 1997, 2000). Explicitly, if ð�Þ denotes the transform
relative to variables t, X and x2,

�ff ðx; n1; n2Þ ¼
Z

dt
Z

dX
Z

dx2 f ðt; Vt þ X ; x2Þ expfi½xt þ n1X þ n2x2�g; ð2:15Þ

where f ðt; x1; x2Þ is defined relative to the fixed frame. It is easily verified that

�ff ðx; n1; n2Þ ¼ ~ff ðx � V n1; n1; n2Þ: ð2:16Þ
This elementary observation allows the immediate extension to viscoelasticity of the elastic analysis of

Willis and Movchan (1995).
Eq. (2.14) is true for any constitutive function L. From now on, we specialize to a Maxwell fluid with

constitutive relation given by

_rr þ r
s
¼ E _ee; ð2:17Þ

where the superposed dot denotes (o=ot), so that LðtÞ ¼ E½dðtÞ � s�1 expð�t=sÞHðtÞ� and has Fourier

transform

eLLðxÞ ¼ Exs
xs þ i

: ð2:18Þ

Thus, eLLðx0Þ is analytic for n1 in the lower half of the complex n1 plane when x is real or has positive

imaginary part, as is usually invoked for causality. For this constitutive relation, the phase speed cðxÞ is
given by

cðxÞ ¼ d½1þ i=xs��1=2
; ð2:19Þ

where d :¼ ðE=qÞ1=2 is the elastic, high-frequency, wave speed. The ‘‘square root’’ function in (2.14) is easily

factorized,

ðx0Þ2=ðcðx0ÞÞ2
�

� n2
1 � n2

2

�1=2
¼ idðn1 � nþ

d Þ
1=2ðn1 � n�

d Þ
1=2

; ð2:20Þ

where

n�
d ðx; n2Þ ¼ � V x

d2d2
� iV

2d2d2s
� x2

d4d2

�
þ ix

d4d2s
� V 2

4d4d4s2
� n2

2

d2

�1=2

ð2:21Þ
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and the constant d is given by d2 ¼ 1� V 2=d2. If the square root function in (2.21) is defined so as to have

positive imaginary part when x and n2 are real, then nþ
d has positive imaginary part, and n�

d has negative

imaginary part when x and n2 are real. The proof of this is as follows. We know from the work of Willis

and Movchan (1995) that in the limit s ! 1 (corresponding to elasticity), the two branch points n�
d are in

different half-planes, possibly separated by the (vanishingly small) imaginary part of x. By rearranging

(2.20), it can be shown that n�
d satisfies

x � V n�
d ¼ � i

2s
� d2ðn�2

d

�
þ n2

2Þ �
1

4s2

�1=2

: ð2:22Þ

Suppose that n�
d is real for some real x. Then, both sides of (2.22) are real. This can only be true if

x ¼ nþ
d ¼ n2 ¼ 0. It is never possible for n�

d to be real, if x has non-negative imaginary part. Hence, n�
d

never cross the real axis as s varies, so they always remain in their respective half-planes. It should be noted

that, for general s, n�
d are away from the real axis even when x is exactly real, thus removing the need for a

small imaginary addition to x.

The equation (2.14) may be rewritten as

2R

deLLðx0Þðn1 � nþ
d Þ

1=2
¼ �ðn1 � n�

d Þ
1=2½U �: ð2:23Þ

The left side of (2.23) is analytic in a lower half of the complex n1 plane, and the right hand side is analytic
in an upper half-plane. Therefore, by analytic continuation, the right hand side describes an entire function,

which must be constant, by Liouville�s theorem, since by the conditions imposed, ½U � � ð2iÞ1=2ðn1 þ 0iÞ�1=2

as n1 ! 1. Hence,

½U �ðx; n1; n2Þ ¼ ð2iÞ1=2ðn1 � n�
d Þ

�1=2
: ð2:24Þ

Expanding ½U � for large jn1j,

½U � ¼ ð2iÞ1=2

ðn1 þ 0iÞ1=2
1

�
þ n�

d

2ðn1 þ 0iÞ þ Oðjn1j�2Þ
�
: ð2:25Þ

Willis and Movchan (1995), Eq. (7.4) define a generalized function Q so that

½U � ¼:
ð2iÞ1=2

ðn1 þ 0iÞ1=2
1

�
þ iQðx; n2Þ

n1 þ 0i
þ Oðjn1j�2Þ

�
: ð2:26Þ

Thus, in the present context,

Qðx; n2Þ ¼ � in�
d

2
: ð2:27Þ

2.3. Perturbation of the stress intensity factor and the energy release rate

Willis and Movchan (1995) prove that the perturbation DK of the stress intensity factor and crack front

position for constant unperturbed stress intensity factor K0 are related so that

DK
�K0

¼ Q
�

þ 1

2
m
�
�//; ð2:28Þ

S. Woolfries et al. / International Journal of Solids and Structures 39 (2002) 5409–5426 5413



where m ¼
ffiffiffiffiffiffi
2p

p
M=K0, the expansion of the stress ahead of the unperturbed crack being given by

r � K0ffiffiffiffiffiffiffiffiffi
2pX

p



� Pðt; x2Þ þ M
ffiffiffiffi
X

p �
HðX Þ as X ! 0þ: ð2:29Þ

Woolfries and Willis (1999) use (2.28) to deduce that the Fourier transform with respect to ðt; x2Þ of the

energy release rate satisfies

DG
�G0

¼ ð�qq þ mÞ �//; ð2:30Þ

where

�qq ¼ 2Q � iV x

d2d2
ð2:31Þ

in the case of elasticity. Morrissey and Rice (1998) gave the relation (2.30) in the case m ¼ 0. Since the near-
tip stress and displacement fields for viscoelasticity are the same as those for elasticity using the elastic,

high-frequency, moduli (see e.g. Freund, 1990), this result may be used here, with

�qqðx; n2Þ ¼ � V

2d2d2s
þ i

x2

d4d2

�
þ ix

d4d2s
� V 2

4d4d4s2
� n2

2

d2

�1=2

: ð2:32Þ

2.4. The transfer function h

Renaming n2 as k and x2 as z, the crack front position and energy release rate are related so that

� �//ðx; kÞ ¼ �hhðx; kÞDG
G0

ðx; kÞ; ð2:33Þ

where

�hhðx; kÞ ¼ 1

ðm � ðV =ð2d2d2sÞÞÞ þ ði=ðd2d2ÞÞf ðx; kÞ
; ð2:34Þ

and

f ðx; kÞ ¼ x2

�
þ ix

s
� V 2

4d2s2
� k2d2d2

�1=2

: ð2:35Þ

The branches of f ðx; kÞ are chosen such that f ðx; kÞ has positive imaginary part when x and k are real. The

branch points of f ðx; kÞ in the complex x plane for real k are at

x ¼ � i

2s
� d
2

�
� 1

s2
þ 4k2d2

�1=2

: ð2:36Þ

If 4k2d2 < 1=s2, the branch cut runs along the negative imaginary x axis, and is given by

Rx ¼ 0; � 1

2s
� d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
� 4k2d2

r
< Ix < � 1

2s
þ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
� 4k2d2

r
: ð2:37Þ

On the imaginary x axis, f ðx; kÞ is pure imaginary, with positive imaginary part above the branch cut, and

negative imaginary part below it. Just to the left of the branch cut, f ðx; kÞ is real and positive, and just to

the right it is real and negative. If 4k2d2 > 1=s2, the branch cut is

Ix ¼ � i

2s
; � d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2 � 1

s2

r
< Rx <

d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2 � 1

s2

r
: ð2:38Þ
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Just above the branch cut, f ðx; kÞ is pure imaginary with positive imaginary part, and just below, it is pure

imaginary with negative imaginary part.

Candidate singularities of �hhðx; kÞ in the complex x plane are located where f 2 ¼ ðm � V =2d2d2sÞ2d4d4;

thus,

2x ¼ � i

s
�
�
� 1

s2
þ 4d2k2d2 � 4d2d2m m

�
� V

d2d2s

��1=2

: ð2:39Þ

In addition, for x to be a singularity of �hhðx; kÞ, we need sgnIf ðx; kÞ ¼ sgnðm � V =2d2d2sÞ, and also

Rf ðx; kÞ ¼ 0. The residue of �hhðx; kÞ about a pole x ¼ x0 is given by

Res ð�hh;x ¼ x0Þ ¼
d4d2

x0 þ i=2s
m
�

� V

2d2d2s

�
: ð2:40Þ

If 4k2d2 < 1=s2, the conditions for a singularity are met only if the singularity lies on the imaginary x
axis away from the branch cut. That the singularity has no real part requires

1

s2
� 4d2k2d2 þ 4d2d2m m

�
� V

d2d2s

�
> 0 ð2:41Þ

and also, for the singularity to lie outside the branch cut, in addition,

V 2

d2s2
þ 4d2d2m m

�
� V

d2d2s

�
> 0: ð2:42Þ

If both these conditions are met, then only one of the two candidate singularities is allowed, namely at

x ¼ x0, where

x0 :¼ � i

2s
þ i

2
sgn m
�

� V

2d2d2s

�
XðkÞ;

XðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
� 4d2k2d2 þ 4d2d2m m � V

d2d2s

� �s
:

ð2:43Þ

Note that if mðm � V =d2d2sÞ > k2, then x0 has positive imaginary part. Put another way, if m > V =d2d2s,
then x0 always has positive imaginary part for some range of values of k.

If 4k2d2 > 1=s2, any singularity must lie either on the branch cut of �ff ðx; kÞ or on the real x axis. The

latter is true if

1

s2
� 4d2k2d2 þ 4d2d2m m

�
� V

d2d2s

�
> 0 ð2:44Þ

and then the correct root is given by x ¼ x0, where

x0 ¼ � i

2s
þ i

2
sgn m
�

� V

2d2d2s

�
XðkÞ: ð2:45Þ

Again, if m > V =d2d2s, x0 always has positive imaginary part for some range of values of k. On the other

hand, if

1

s2
� 4d2k2d2 þ 4d2d2m m

�
� V

d2d2s

�
< 0; ð2:46Þ

and, in addition to this,
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V 2

d2s2
þ 4d2d2m m

�
� V

d2d2s

�
> 0; ð2:47Þ

then two roots on one side of the branch cut are allowed, given by x1 which is given the appropriate small

imaginary part,

x1 ¼ � i

2s
� X1ðkÞ þ 0i sgn m

�
� V

2d2d2s

�
; ð2:48Þ

where

X1ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

s2
þ 4d2k2d2 � 4d2d2m m � V

d2d2s

� �s
: ð2:49Þ

Evaluation of the transfer function h is described in Appendix B.

A term that grows exponentially with time for some range of values of k is present if and only if

m >
V

d2d2s
: ð2:50Þ

If this is not the case, then �hhðx; kÞ is analytic in the upper half of the complex x plane for all k. In inverting

the transform, both x and k may be taken real, and no singularities are encountered on the axes of inte-

gration.

2.5. Behaviour near the wave front

Making the substitutions

u ¼ x � kdd; ð2:51Þ

v ¼ x þ kdd ð2:52Þ

in Eq. (2.34), and taking m ¼ 0, the following equation is obtained for the transfer function hðt; zÞ,

hðt; zÞ ¼ d
8p2

Z Z
exp � i

2
u t � z

dd

� �� �
exp � i

2
v t þ z

dd

� �� �
�A þ i uv þ i

2s ðu þ vÞ � A2
� �1=2 dudv; ð2:53Þ

where

A :¼ V
2ds

: ð2:54Þ

We are interested in the limiting behaviour of hðt; zÞ as z tends to a point on the wavefront, for t fixed.

Defining, therefore,

f :¼ 1

2
t
�

� z
dd

�
ð2:55Þ

we obtain

hðt; ddðt � 2fÞÞ ¼ lim
f!0

d
8p2

Z Z
expð�ifuÞ expð�ivtÞ

�A þ i uv þ i
2s ðu þ vÞ � A2

� �1=2 dudv: ð2:56Þ

Replacing the variable u by
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s ¼ u v
��

þ i

2s

�
þ iv
2s

� A2

�1=2

; ð2:57Þ

and choosing the branch with positive imaginary part means that

s � i v
�

þ i

2s

�1=2

juj1=2 as u ! �1 ð2:58Þ

s � v
�

þ i

2s

�1=2

juj1=2 as u ! þ1; ð2:59Þ

and the contour of integration may be taken such that s=ðv þ i=2sÞ1=2 lies entirely in the first quadrant of the

complex s-plane. Then,

hðt; ddðt � 2fÞÞ ¼ lim
f!0

d
4p2

Z 1

�1

exp � fv
2sðvþi=2sÞ

� �
exp � ifA2

vþi=2s

� �
expð�ivtÞ

v þ i=2s
Iðf0Þdv; ð2:60Þ

where

f0 :¼ f
v þ i=2s

ð2:61Þ

and

Iðf0Þ ¼
Z

s expð�if0s2Þ
�A þ is

ds; ð2:62Þ

where s follows some contour in the upper half-plane. By differentiating with respect to f0, Iðf0Þ satisfies the
differential equation

oI
of0

þ 2AI ¼ �i
o

of0

Z
expð�if0s2Þds: ð2:63Þ

Substituting

w ¼ s2

v þ i=2s
; ð2:64Þ

the contour of integration on the right hand side of (2.63) may be deformed to lie just above the real axis,
since w ! �1þ 0i as u ! �1. Hence,Z

expð�if0s2Þds ¼ 1

2
v
�

þ i

2s

�1=2 Z 1þ0i

�1þ0i

exp
�ifw
w1=2

� �
dw

¼
ffiffiffi
p
f

r
v
�

þ i

2s

�1=2

exp

�
� pi

4

�
HðfÞ;

ð2:65Þ

(see e.g. Gelf�and and Shilov, 1964). Differentiating with respect to f0,

�i
o

of0

Z 1

�1
expð�if0s2Þds ¼ i

2
exp

�
� pi

4

� ffiffiffi
p

p

ðf0Þ3=2
HðfÞ; ð2:66Þ

and then solving for Iðf0Þ,

S. Woolfries et al. / International Journal of Solids and Structures 39 (2002) 5409–5426 5417



Iðf0Þ ¼ i
ffiffiffi
p

p

2
exp

�
� pi

4

�(
� 2

ðf0Þ1=2
þ 2

ffiffiffi
A

p ffiffiffiffiffiffi
2p

p
erfi

ffiffiffi
2

p ffiffiffi
A

p ffiffiffiffi
f0

p� �)
HðfÞ þ const expð�2Af0ÞHðfÞ

� � exp

�
� pi

4

�
i
ffiffiffi
p

p

ðf0Þ1=2
HðfÞ þ Oð1Þ ð2:67Þ

as f0 ! 0. Taking the leading term only, and putting f ¼ 0 in the terms in the exponential of (2.60),

hðt; ddðt � 2fÞÞ � � id
ffiffiffi
p

p

4p2
ffiffiffi
f

p exp

�
� pi

4

�
HðfÞ

Z 1

�1

expð�ivtÞ
ðv þ i=2sÞ1=2

dv: ð2:68Þ

Lowering the v contour to run just above the branch cut of the square root function,

hðt; ddðt � 2fÞÞ � � id
ffiffiffi
p

p

4p2
ffiffiffi
f

p exp

�
� pi

4

�
exp

�
� t
2s

�
HðfÞ

Z 1þ0i

�1þ0i

expð�ivtÞ
ðvÞ1=2

dv; ð2:69Þ

and finally,

hðt; ddðt � 2fÞÞ � � d
2p

exp � t
2s

� �ffiffiffiffi
ft

p HðtÞHðfÞ ð2:70Þ

as f ! 0. Note that putting s ¼ 1 in this expression regains the limiting behaviour near the wavefront for

the transfer function hðt; zÞ in the elastic case (see Morrissey and Rice, 1998; Woolfries and Willis, 1999).

Fig. 1 shows values of hðt; zÞ obtained by numerical inversion of the Fourier transform �hhðx; kÞ given by

Fig. 1. A plot of the transfer function hðt; zÞ versus z for the scalar model problem, for t ¼ 5 and 10. Units are chosen such that the

relaxation time s and the elastic wave speed d are unity. The crack speed is V ¼ 0:5. The dashed lines show the limiting behaviour near

the wavefront given by (2.70).
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(2.34), for s ¼ 1, with m ¼ 0. The dashed lines show the limiting behaviour (2.70). As f ! 0, the solid and

dashed lines approach each other; the numerical simulation does not allow us to obtain highly accurate

numerical results near the limit points. The crack front position could be calculated from the energy release

rate DG in a particular problem as in Woolfries and Willis (1999) via (2.33),

�/ðt; zÞ ¼ hðt; zÞ � DG
G0

ðt; zÞ; ð2:71Þ

where � means convolution over t and z.

3. Mode I crack in a viscoelastic medium

3.1. Governing equations. Wiener–Hopf factorization

The constitutive equation for a viscoelastic solid in three dimensions is taken as

rijðt; xÞ ¼
Z

Lðt � t0Þ kdijekkðt0; xÞ
�

þ 2leijðt0; xÞ
�
dt0; ð3:1Þ

where k and l are constants. Fourier transforming with respect to time only,

~rrijðx; xÞ ¼ eLLðxÞ kdij~eekkðx; xÞ
n

þ 2l~eeijðx; xÞ
o
: ð3:2Þ

In this section, we specialize to the Maxwell fluid (2.18), so that eLL is given byeLLðxÞ ¼ xs
xs þ i

: ð3:3Þ

The equations for the behaviour of stress and displacement fields, Fourier transformed with respect to time

in the fixed frame of reference, may be obtained by replacing k by eLLðxÞk and l by eLLðxÞl. In particular,

Appendix A of Willis and Movchan (1995) follows through to give the equation for the displacement jump

½U3� across x3 ¼ 0 in terms of the traction R33 on x3 ¼ 0 for Mode I,

eRR33 x0; n1; n2

� �
¼

ilb2 eLLðx0Þ
� �2

D x0; n1; n2

� �
2x02 x02

a2eLLðx0Þ
� jnj2

 !1=2
eUU3

h i
x0; n1; n2

� �
; ð3:4Þ

where jnj2 ¼ n2
1 þ n2

2, and the constants a, b denote the relevant elastic dilatational and shear wave speeds,

a2 ¼ ðk þ 2lÞ=q; b2 ¼ l=q: ð3:5Þ
Following Willis and Movchan (1995), x0 is to be set as x0 ¼ x � V n1. The function Dðx0; n1; n2Þ is given by

D x0; n1; n2

� �
¼ 4jnj2 x02

a2eLLðx0Þ

 
� jnj2

!1=2

x02

b2eLLðx0Þ

 
� jnj2

!1=2

þ x02

b2eLLðx0Þ

 
� 2jnj2

!2

: ð3:6Þ

The factor D has a double zero at x0 ¼ 0. The equation D ¼ 0 is also satisfied when

x02

jnj2
¼ c2eLLðx0Þ; ð3:7Þ

where the constant c satisfies the Rayleigh equation based on a and b. From (2.20), Eq. (3.7) is satisfied

when n1 ¼ n�
c , where n�

c is defined as in (2.20), with d replaced by c. The values n�
a and n�

b are similarly
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defined. From the work in the previous section, there is one root in either half of the complex n1 plane, away

from the real axis. Note that the presence of the term ix=s ensures that there is no need for the addition to x
of a small imaginary part to separate the roots and ensure causality, as was necessary for the case of

elasticity in Willis and Movchan (1995).
Eq. (2.20) also provides the factorization

x02

a2eLLðx0Þ

 
� jnj2

!1=2

¼ ia n1

�
� nþ

a

�1=2
n1

�
� n�

a

�1=2
; ð3:8Þ

where the constant a ¼ ð1� V 2=a2Þ1=2. Hence, Dðx0; n1; n2Þ has branch points at n1 ¼ n�
a and n1 ¼ n�

b . Also,

D x0; n1; n2

� �
� �n4

1RðV Þ ð3:9Þ

as n1 ! 1, where

RðV Þ ¼ 4ab � ð1þ b2Þ2; ð3:10Þ

and the constant b ¼ ð1� V 2=b2Þ1=2. Therefore, defining

T ðx; n1; n2Þ :¼ �
D x0; n1; n2

� �
V 2

n1 � nþ
c

� �
n1 � n�

c

� �
x02RðV Þ

ð3:11Þ

ensures that T is analytic and non-zero in a strip containing the real n1 axis and tends to 1 as n1 ! 1.

Hence,

T ðx; n1; n2Þ ¼ Tþðx; n1; n2ÞT�ðx; n1; n2Þ; ð3:12Þ

where

T�ðx; n1; n2Þ ¼ exp
�1

2pi

Z
C�

ln T x; n0
1; n2

� �
n0
1 � n1

dn0
1

8<:
9=;: ð3:13Þ

The function ln T ðx; n0
1; n2Þ is analytic in the complex n0

1 plane, with branch cuts B� joining n�
a and n�

b in the

upper or lower half of the complex n0
1 plane. The contours C� enclose these branch cuts. The Wiener–Hopf

factorization of (3.4) is therefore

2bR33 n1 � nþ
a

� �1=2
lb2 eLLðx0Þ
� �2

n1 � nþ
c

� �
T�

¼ �
n1 � n�

c

� �
RðV ÞTþ

n1 � n�
a

� �1=2
V 2

U 3

�  
: ð3:14Þ

The right hand side is analytic in an upper half-plane, the left hand side in a lower half-plane. By the
conditions imposed on ½U3�, outlined in the previous section, ½U 3� � ð2iÞ1=2ðn1 þ 0iÞ�1=2

as n1 ! 1. Hence,

the right hand side is a bounded entire function, and therefore must be a constant, by Liouville�s theorem.

Thus,

U 3

�  
¼

ð2iÞ1=2 n1 � n�
a

� �1=2
n1 � n�

c

� �
Tþ

ð3:15Þ

(c.f. Willis and Movchan, 1995, Eq. (4.16)).
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3.2. Analysis of the transfer function

The generalized function Qðx; n2Þ relating crack front position to stress intensity factor is defined by

U 3

�  
� ð2iÞ1=2

ðn1 þ 0iÞ1=2
1



þ iQ
ðn1 þ 0iÞ

�
ð3:16Þ

as n1 ! 1 (see Willis and Movchan, 1995, Eq. (7.4)). Therefore,

iQ ¼ � 1

2
n�

a þ n�
c � 1

2pi

Z
C�

ln T x; n0
1; n2

� �
dn0

1 ð3:17Þ

(c.f. Willis and Movchan, 1995, Eq. (7.6)). The integral term in the above expression is treated in Appendix

C. The function Qðx; kÞ participates in the relation

DK
�K0

¼ Q
�

þ 1

2
m
�
�// ð3:18Þ

and is therefore designated a transfer function. The relationship between stress intensity factor and energy

release rate for Mode I viscoelasticity is given by (e.g. Freund, 1990)

G ¼ f ðvÞK2=2l; ð3:19Þ
where f ðvÞ is given by

f ðvÞ ¼ av2

ð1� mÞRðvÞb2
: ð3:20Þ

Here, m is Poisson�s ratio, m ¼ k=2ðk þ lÞ. The relationship between the crack front position / and first-

order perturbation in energy release rate DG is obtained from (3.19) by substituting v ¼ V þ � _//,
G ¼ G0 þ DG, K ¼ K0 þ DK, taking order � perturbations and using (3.18). The result is

DG
�G0

ðx; kÞ ¼ �qqðx; kÞ
�

þ m
�
�//ðx; kÞ; ð3:21Þ

where

�qqðx; kÞ ¼ 2Qðx; kÞ � ix
f 0ðV Þ
f ðV Þ : ð3:22Þ

Correspondingly,

� �//ðx; kÞ ¼ DG
�G0

ðx; kÞ 1

�qqðx; kÞ þ m
� � : ð3:23Þ

Ramanathan (1997) (also reported in Ramanathan and Fisher, 1997) has numerically evaluated the

transfer function �qqðx; kÞ from formulae corresponding to those of Willis and Movchan (1995) for the purely

elastic case (corresponding to the limit s ! 1). In this limit, the transfer function is a homogeneous

function of degree 1, and has a zero at a certain real value of x=k. This gives rise to a singularity in the

relationship (3.23) when m ¼ 0. Morrissey and Rice (1998) showed that, for the case of mode I elasticity,

this corresponds to a persistent propagating mode (crack front wave) for crack growth at constant fracture

energy, and found evidence of such a mode in their numerical calculations.

The existence of a singularity on the real axis in (3.23) also affects the crack stability. Ramanathan (1997)
describes this as being �on the boundary of a regime of stability�, and points out that any dependence of the

energy release rate on velocity of crack propagation would resolve this.
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We have now a mechanism for resolving this in the case of viscoelasticity. Ramanathan (1997), Fig. 3.2

plots �qqðx; kÞ=jkj against x2=k2 for elasticity. From the fact that this takes both positive and negative real

values, and from the fact that in this case �qq is homogeneous of degree 1, we can deduce that, in the case of

elasticity, �qq maps the infinite real domain fðx; kÞ 2 ð�1;1Þ � ð�1;1Þg onto a region of the complex
plane which contains the whole real axis. This gives rise to a singularity of the transfer function given in

(3.23) for any m and gives the value of the ratio x=k at which the zero occurs, corresponding to (non-

dispersive) crack front waves in the case m ¼ 0. Fig. 2 shows the domain D of the complex plane defined as

f�qqðx; kÞ : ðx; kÞ 2 ½0; 1� � ½0; 1�g for different relaxation times s. Parameters are chosen such that c ¼ 1,

a ¼ 1:8569757, b ¼ 1:0721216 and V ¼ 0:5. It should be noted that �qq is symmetric in k and Hermitian, so

that �qqð�x;�kÞ ¼ �qqð�x; kÞ ¼ �qq�ðx; kÞ. In Fig. 2a, b, c, it is explicit that D has no common points with the

positive real axis. This feature is also present in Fig. 2d, despite the very large relaxation time, and this in

fact remains the case for any positive s. In Fig. 2b, for example,D does not contain any real number greater

Fig. 2. The region D ¼ f�qqðx; kÞ : ðx; kÞ 2 ½0; 1� � ½0; 1�g. Parameters are chosen such that c ¼ 1, a ¼ 1:856975729, b ¼ 1:072121621

and V ¼ 0:5.
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than about �0.25. This means that there is no singularity in the relationship (3.23) for m < 0:25. In par-

ticular, for m ¼ 0, the introduction of any amount of viscoelasticity destroys the existence of crack front

waves and instability.
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Appendix A. Definition of the weight function

To justify the definition in Section 2 of the function Uðt; x1; x2; x3Þ, note first that, if functions f ðt; x1; x2Þ
and gðt; x1; x2Þ are given, and the definitions

F ðt;X ; x2Þ :¼ f ðt; Vt þ X ; x2Þ; Gðt;X ; x2Þ :¼ gðt; Vt þ X ; x2Þ ðA:1Þ
are made, then

ðF � GÞðt;X ; x2Þ ¼
Z

dt0
Z

dX 0
Z

dx02f t0; Vt0
�

þ X 0; x02
�
g t
�
� t0; V ðt � t0Þ þ X � X 0; x2 � x02

�
¼
Z

dt0
Z

dx01

Z
dx02f t0; x01; x

0
2

� �
g t
�
� t0; Vt þ X � x01; x2 � x02

�
¼ ðf � gÞðt; Vt þ X ; x2Þ � ðf � gÞðt; x1; x2Þ; x1 ¼ Vt þ X ;

ðA:2Þ

where the symbol � represents convolution over the natural arguments of the respective functions.

Now Willis (1997), Eq. (4.11) derived, in the context of elastodynamics, the identity

ð½Ui� � ri3 � Rk3 � ½uk�Þðt; x1; x2Þ ¼ 0 ðA:3Þ
relative to the stationary frame of reference. However, in this frame, it also applies immediately if the

response of the medium is linearly viscoelastic: Fourier transforming with respect to t, for example, re-

produces the equations of elastodynamics, except that the ‘‘elastic constants’’ now become functions of x.
The result (A.2) shows that the identity (A.3) can equally well be interpreted relative to the moving frame.

With slight distortion of the notation,

ð½Ui� � ri3 � Rk3 � ½uk�Þðt;X ; x2Þ ¼ 0: ðA:4Þ

The problem for Mode I loading uncouples from those for Modes II and III. Hence, for Mode I, dropping

the suffixes,

ð½U � � r � R � ½u�Þðt;X ; x2Þ ¼ 0: ðA:5Þ

This equation applies equally well to the model problem of Section 2.

Now decompose r into two parts:

r ¼ rþ þ r�; ðA:6Þ
where rþ ¼ 0 for all X < 0, and r� ¼ r � rþ. The function ½u� is a ‘‘�’’ function, in this notation. It is an
unknown of the problem. The function r� is known, from the boundary conditions. The function rþ is to

be found. In particular, as X ! 0þ,

rþ � Kðt; x2Þ=
ffiffiffiffiffiffiffiffiffi
2pX

p
; ðA:7Þ
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the stress intensity factor K being so far unknown. However, the function ½U � is a ‘‘þ’’ function, while R is a

‘‘�’’ function. Therefore, when X > 0, R � ½u� ¼ 0 (since ½u� is also a ‘‘�’’ function), and the identity (A.5)

reduces to

ð½U � � rþÞðt;X ; x2Þ ¼ �ð½U � � r�Þðt;X ; x2Þ; X > 0: ðA:8Þ

Finally, the convolution on the left side can be evaluated explicitly when X ! 0þ, from just the asymptotic

forms (2.13) and (A.7), to give

Kðt; x2Þ ¼ �ð½U � � r�Þðt; 0; x2Þ: ðA:9Þ

The function ½U �ðt;X ; x2Þ is thus a ‘‘weight function’’.

Appendix B. Evaluation of the transfer function for a scalar problem

The transfer function hðt; zÞ is given by

hðt; zÞ ¼ 1

4p2

Z
expð�ikzÞdk

Z
expð�ixtÞ�hhðx; kÞdx; ðB:1Þ

where the line of integration in the complex x plane must pass above all singularities, to ensure causality.

Enclosing the contour in the lower half-plane for t > 0, we pick up all of the pole contributions away from

the branch cuts. The contour still encloses the singularities situated just above or below the branch cut.
These can be expressed in terms of a Cauchy principal value plus contributions from the singularity, using

the Plemelj formulae.

The branch cut contribution for 4k2d2 < 1=s2 is given by

I
expð�ixtÞ�hhðx; kÞdx ¼ � 2i

d2d2
expð�t=2sÞ exp

 
� d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
� 4k2d2

r
t

!

�
Z d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
�4k2d2

p
0

ffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s þ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s2 � 4k2d2

qr
expðstÞ

m � V
2d2d2s

� �2
þ s

d4d2 s þ d 1
s2 � 4k2d2
� �� � ds: ðB:2Þ

The principal part of the branch cut contribution for 4k2d2 > 1=s2 is given by

I
expð�ixtÞ�hhðx; kÞdx ¼ 2

d2d2
expð�t=2sÞ

Z d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2� 1

s2

p
0

expð�istÞ ffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2 � 1

s2

q
� s

r
m � V

2d2d2s

� �2
� s

d4d2 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2 � 1

s2

q
� s

� � ds:

ðB:3Þ

Adding all of the contributions, the transfer function hðt; zÞ is given by

hðt; zÞ ¼ 1

4p2

Z
expð�ikzÞĥhðt; kÞdk; ðB:4Þ
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where

ĥhðt;kÞ ¼ 4pd4d2 m

#### � V

2d2d2s

#### expðt=2sÞ exp 1

2
sgn m
��

� V

2d2d2s

�
XðkÞt

�
H

1

s2

�
� 4k2d2d2

þ 4d2d2m m
�

� V

d2d2s

��
H 4k2d2

�$
� 1

s2

�
þ H

1

s2

�
� 4k2d2

�
H

V 2

d2s2

�
þ 4d2d2m m

�
� V

d2d2s

��%

þ
2pd4d2 m� V

2d2d2s

### ###
X1ðkÞ

ðexpð�iX1ðkÞtÞ � expðiX1ðkÞtÞÞH 4k2d2d2 � 1

s2

� �
�H

V 2

d2s2
þ 4d2d2m m

�
� V

d2d2s

�� �
H 4k2d2d2 � 1

s2
� 4d2d2m m

�
� V

d2d2s

�� �
� 2i

d2d2
H

1

s2
� 4k2d2

� �
expð�t=2sÞ exp � d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
� 4k2d2

r
t

 !

�
Z d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
�4k2d2

p
0

ffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s2 � 4k2d2

qr
expðstÞ

m� V
2d2d2s

� �2
þ s

d4d2 sþ d 1
s2 � 4k2d2
� �� � dsþ 2

d2d2
expð�t=2sÞH 4k2d2 � 1

s2

� �

�
Z d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2� 1

s2

p
0

expð�istÞ ffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2 � 1

s2

q
� s

r
m� V

2d2d2s

� �2
� s

d4d2 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2d2 � 1

s2

q
� s

� � ds: ðB:5Þ

The last expression in the above equation is interpreted as a Cauchy principal value, if that is required.

Appendix C. Complex integral in the transfer function

The expression (3.17) for the transfer function Qðx; kÞ involves the term

Iðx; n2Þ ¼
Z

C�

ln T x; n0
1; n2

� �
dn0

1; ðC:1Þ

where C� encloses the branch cut joining n�
a and n�

b in the clockwise direction. The function T ðx; n0
1; n2Þ is

defined via (3.11),

T x; n0
1; n2

� �
:¼ �

D x � V n0
1; n

0
1; n2

� �
V 2

n0
1 � nþ

c

� �
n0
1 � n�

c

� �
x � V n0

1

� �2
RðV Þ

; ðC:2Þ

with D defined by (3.6). The denominator takes the same values on both sides of the branch cut. Above the

branch cut, parameterized by

n0
1 ¼ n�

a þ ðs � 0iÞ n�
b

�
� n�

a

�
; ðC:3Þ

the numerator takes the value Y � X , where

X ¼ 4abi n0
1

�
� nþ

a

�1=2
n0
1

�
� nþ

b

�1=2
n02
1

�
þ n2

2

�
n�

a

�
� n�

b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p
;

Y ¼ n02
1

h
þ n2

2 þ b2ð1� sÞ n0
1

�
� nþ

b

�
n�

a

�
� n�

b

�i2
:

Below the branch cut, the numerator takes the value Y þ X . In the expressions for Y and X, n0
1ðsÞ un-

ambiguously takes the values

n0
1ðsÞ ¼ n�

a þ s n�
b

�
� n�

a

�
: ðC:4Þ

S. Woolfries et al. / International Journal of Solids and Structures 39 (2002) 5409–5426 5425



The integral I is given by

Iðx; n2Þ ¼ n�
b

�
� n�

a

� Z 1

0

ln
Y � X
Y þ X

� �
ds; ðC:5Þ

where n0
1ðsÞ takes the values (C.4) and n�

a and n�
b are functions of x and n2 given by (2.21) with the ap-

propriate replacements.
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